@ Oeum

Qtum

How Qtum Makes EVM Run on the UTXO Model

Patrick Dai (Cofounder of Qtum)
18th Feb 2017@EDCON Paris



UTXO (Unspent Transaction Outputs) @ _—

1 The basis of bitcoin transaction
2 Stateless

3 Parallelism

4 SPV



@ Oeum

Build smart contract base on stateless UTXO sets ?



@ Oeum

New Opcodes
Qtum Account Abstraction Layer



Three New Opcodes @ deum

1.0P_EXEC - This opcode will trigger special processing of a
transaction and will execute the EVM bytecode passed to it.
OP_EXEC is primarily used to deploy new smart contracts.

2.0P_EXEC_ASSIGN - This opcode will also trigger special
processing like OP_EXEC. This opcode is passed a contract address
and data to give the contract. It will then execute the contract’s
bytecode while passing in the given data (given as CALLERDATA in
EVM). This opcode is also used for sending money to a smart contract.

3.0P_TXHASH - Spend the OP_EXEC ASSIGN’s Vouts after
checking they belong to the contract trying to spend them.



Bitcoin Script Language serves less as a scripting language and
more as strictly a way to carry data to the EVM O-tum

Execution and validation does not happen until a transaction input references that output

Valid: input script (ScriptSiq) provide a valid data to the output script that causes it to return 1

VY VV Y v v

<sig> <pubKey> OP DUP OP_ HASH160 <pubKeyHash?> OP_EQUALVERIFY OP_ CHECKSIG

Alan Turing
23 June 1912 - 7 June 1954

Figl: Bitcoin script execution



How to execute smart contract immediately when merged into the
blockchain?

1 Special processing of transaction output scripts (ScriptPubKey) which contain either OP_EXEC or
OP_EXEC_ASSIGN

2 When one of these opcodes are detected in a script, it is executed by all nodes of the network
after the transaction is placed into a block as output.

3 When Qtum encounters OP_EXEC or OP_EXEC_ASSIGN it runs some initial checks, then feeds
the code and gas values to the EVM

4 Executes the code and applies changes to its state and returns execution results to Qtum core
including the regular EVM results such as gas used...

@ Otum



Qtum Account Abstraction Layer @ Oeun

Account Abstraction Layer which translates
the UTXO-based model to an account-based
interface for the EVM to use



How to Deploy and Call a Contract in Qtum? @ .

1 Create a new zero balance contract using OP_EXEC

2 Call the contract using OP_EXEC_ASSIGN opcode

The output script (scriptPubkey) which sends money to the contract syntax

1; the version of the VM (EVM is 1)

10000; gas limit for the transaction

100; gas price in Qtum satoshis

OxFO12; data to send the contract
0x1452b22265803b201ac1f8bb25840cb70afe3303; address of the contract

OP_EXEC_ASSIGN
The value to send to the contract is passed using the regular bitcoin transaction output value



Assign Funds and/or Message contract TX

Assign Funds and/or Message Contract TX

Inputs Outputs
spend pubkeyhash Output with data and
from wallet money for contract [N

Change outputto
send to pubkeyhash
wallet address

/

Authentication of
data as being sent
from pubkeyhash

Execute EVM

bytecode, with
provided data

~ A

OP_EXEC_ASSIGN
coins belonging to
spending contract

N~

Fig2. Assign Funds and/or
Message contract TX

Oeum



Contract to Contract or to Public Key Hash Address payment @ S

Expected Contract Transactions List: Contract spend transactions generated by the
miner and added to a block

1 Contract spendsone or more of its owned output

2 These transactions must be include in a block to be considered valid

3 Generated by miners while verifying and executing transactions, rather than
being generated by consumers

4 No need to broadcast contract transactions on the P2P network.



Spend contract OP_ EXEC ASSIGN transaction

Spend Contract OP_EXEC_ASSIGN TX

Oeum

Inputs Outputs
Spend picked Target address
| contract coins using (pubkeyhash,
v OP_TXHASH contract, p2sh, etc)
Coin picking
algorithm .
~, Spend picked Change output to
A contract coins using give remaining funds
OP_TXHASH back to contract
EVM contract bytecode /

that spends coins

Fig3 Spend contract OP_EXEC_ASSIGN transaction

~

OP_EXEC_ASSIGN
coins belonging to Current block being
spending contract mined

N~




consensus-critical coin picking algorithm

* To avoid nodes picking different outputs to spend contract funds,We
designed a strict and simple consensus-critical coin picking algorithm.

 First In First Out

* Any miner/node who picks different outputs will be rejected, because
it will fail at the block verification.



Fig4. Qtum Block Validation showing
Expected Contract Transaction List

Qtum Block Validation

Check PoS

2

Check merkle
hash, block
reward, etc

v

Check Each
transaction

4

Check transaction
vins exists and is
unspent

v

-
Ifvin is spent using
OP_TXHASH as
argument to
OP_EXEC_ASSIGN,
check Expected
Contract Transaction
List

¥

Check vin redeem
scriptreturns 1

~

vout contains
OP_EXEC

Execute EVM
bytecode

v

Place contract spend
transactions into
Expected Contract
Transaction List

Y

Block is valid

Expected Contract
Transaction List

Oeum



Standard transaction types: Bitcoin Script templates @ .
Deploying a new contract to the blockchain should use an output script which looks like so:

1; the version of the VM
[Gas limit]

[Gas price]

[Contract EVM bytecode]
OP_EXEC

Sending Funds and Message to an already deployed contract on the blockchain:

1; the version of the VM

[Gas limit]

[Gas price]

[Data to send to the contract]
[contract address]
OP_EXEC_ASSIGN

Note : there are no standard transaction type which can spend either of these. This is because they can
only be spent by using the Expected Contract Transaction List, and thus these spending transactions
would not be broadcast nor valid on the P2P network.



Gas model

*gas fee =gas limit *gas price
*txfee=vin-vout

*tx relay fee= txfee- gas fee
*refund = gas fee - used gas



Gas refund model

Smart contract
funding transaction

v

Execute EVM

Yes
Ranouto

Create new coinbase
output to send output

Gas

Assign funds to
contract and make
spendable by
contract

Yes
as leftove

Y

value to sender,
keeping fees for
miner

OP_EXEC_ASSIGN
coins belonging to
spending contract

Create new coinbase

gas

N\

Done

» outputto send back
to sender

Fig 5. Gas refund model

Oeum



Qtum General Architecture

Qtum transactions templates

. o . None OP_EXE%
version | | gasLimit| |gasPrice data +
(4 bytes)| | (8 bytes) | | (8 bytes)| |(< 200 Kbytes)|[ address OPfEXchASSIGN]
(20 bytes)
CBlock
CBlockHeader
+ {Qtum data}
>| + hashStateRoot
+ hashUTXORoot Update
vix
+ /Update reward
Add
J create
Expected
txHash queue [
push
pop & verify

Mining process

\

>[Save state

)

J

Add transaction(s)

\

[Qtum validation (miner)

]

[search for EXEC

]

Has exec No exec

execute bytecode

calculate fee

[calculate fee and [addtranLtion]
refund

QtumState

+ UTXO TrieDB

\

-

[ Get hash

add transaction

add generated .
transactions

-

/

[Update root hashes

J«

[Restore state

[Calculate PoW (temporary)

[Release block

)
]
/

-

EthereumState

~

/

k execute(VMArguments) /

yal CGonnect block

™\

f [Header validation (gtum rules)

)

reate hash queue

Connect transactions

~

Qtum tx validation

Search for EXEC

)
]
)
)

Has exec No exec

ute bytecode

add generated txs |
to queue

[search for TXHASH

Has txHash

compare expected

ensure empty

Compare

| No exec

wnsaction hash

[Compare state roots

[Ensure queue is empty

/ BCExecutor

R ﬁaunch bitcoin script interpreter

[interrupt on exec

[parse stack (see templates)

[com bine eth-like tx

[

=

un

transform internal contracts
calls to Qtum transactions

-

\LOUouy )

\[Accept block

Fig 6 Qtum General Architecture

O-eum



SPV: Simple Payment Verification

1) - Microsoft Visual Studio 5554:Xamarin_Android_API_23

Build Debug Team GITEXT Tools Test Analyze Windd
p|9-Q- &
bvior.cs @ Network.cs @ Message.cs & NodelListene

-|% ContractDemo.Ma_ ContractDemo

:ach (var tx in txs)

var spent = tx.SpentCoins.Where(x => x.ScriptPubKey != nul
foreach(var c in spent)

Value of Fish:

list.RemoveAll(x=>x.0Outpoint.Hash == c.Outpoint.Hash &

¥ REPORT GOOD FISH
irn list;
REPORT BAD FISH
lance()
REQUEST MORE FISH
; total = @;

:ach(var tx in tracker.GetWalletTransactions(chain))
REFRESH

var recv = tx.ReceivedCoins.Where(x => x.ScriptPubKey != n
if (recv.Count() > @)

total += recv.Sum(x => x.Amount);
}
var sent = tx.SpentCoins.Where(x => x.ScriptPubKey != null
if (sent.Count() > @)

{

total -= sent.Sum(x => x.Amount);
¥
irn total;

veid btnRefreshClick(object sender, EventArgs

Eve gs

e)

{viewById<TextView>(Resource.Id.textBalance).Text = string.

Fig 7 testnet and mobile smartcontract

Balance: 87.49907235 (count: 19, utxos: 16)

24

g t

Fig 8 Apple Watch Wallet




Oeum

Qtum Project Timeline

Foundation Crowdsale Qtum
Announcement Kickoff Beta Test
10/31
11/25
Private
Placemgnt Crowdsale
SO Completion
Qtum
Crowdsale Plan Launch
Announcement Event

Fig 9 Timeline



RZAVANS
Team /\J/Q/g/rx

///‘
B\Ai@ O-tum

39 Members &2

alex.dulub

anzhy

A

brett
caspal

danny

fw R

earlz

'.i\‘!!'
L

ibai

o)

neo (you)

roman.a

tim

o =

time_qgtum




Angel backer

Anthony Di lorio Weixing Chen David Lee Kuo Chuen

Jehan Chu




Media Reports @ Deum

E CoinDesk
Y/ BITCOIN

Forbes

International N As DA
Business
o2 -
FINANCE MAGNATES

Times



thank you

For more info: www.qgtum.org
Email: patrick@agtum.org
Slack: https://atumnexus.slack.com/

Welcome to join us!

MEETUP IN PARIS



