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UTXO (Unspent Transaction Outputs) @ _—

1 The basis of bitcoin transaction
2 Stateless

3 Parallelism

4 SPV
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Build smart contract base on stateless UTXO sets ?
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New Opcodes
Qtum Account Abstraction Layer



Three New Opcodes @ deum

1.0P_EXEC - This opcode will trigger special processing of a
transaction and will execute the EVM bytecode passed to it.
OP_EXEC is primarily used to deploy new smart contracts.

2.0P_EXEC_ASSIGN - This opcode will also trigger special
processing like OP_EXEC. This opcode is passed a contract address
and data to give the contract. It will then execute the contract’s
bytecode while passing in the given data (given as CALLERDATA in
EVM). This opcode is also used for sending money to a smart contract.

3.0P_TXHASH - Spend the OP_EXEC ASSIGN’s Vouts after
checking they belong to the contract trying to spend them.



Bitcoin Script Language serves less as a scripting language and
more as strictly a way to carry data to the EVM O-tum

Execution and validation does not happen until a transaction input references that output

Valid: input script (ScriptSiq) provide a valid data to the output script that causes it to return 1

VY VV Y v v

<sig> <pubKey> OP DUP OP_ HASH160 <pubKeyHash?> OP_EQUALVERIFY OP_ CHECKSIG

Alan Turing
23 June 1912 - 7 June 1954

Figl: Bitcoin script execution



How to execute smart contract immediately when merged into the
blockchain?

1 Special processing of transaction output scripts (ScriptPubKey) which contain either OP_EXEC or
OP_EXEC_ASSIGN

2 When one of these opcodes are detected in a script, it is executed by all nodes of the network
after the transaction is placed into a block as output.

3 When Qtum encounters OP_EXEC or OP_EXEC_ASSIGN it runs some initial checks, then feeds
the code and gas values to the EVM

4 Executes the code and applies changes to its state and returns execution results to Qtum core
including the regular EVM results such as gas used...

@ Otum



Qtum Account Abstraction Layer @ Oeun

Account Abstraction Layer which translates
the UTXO-based model to an account-based
interface for the EVM to use



How to Deploy and Call a Contract in Qtum? @ .

1 Create a new zero balance contract using OP_EXEC

2 Call the contract using OP_EXEC_ASSIGN opcode

The output script (scriptPubkey) which sends money to the contract syntax

1; the version of the VM (EVM is 1)

10000; gas limit for the transaction

100; gas price in Qtum satoshis

OxFO12; data to send the contract
0x1452b22265803b201ac1f8bb25840cb70afe3303; address of the contract

OP_EXEC_ASSIGN
The value to send to the contract is passed using the regular bitcoin transaction output value



Assign Funds and/or Message contract TX

Assign Funds and/or Message Contract TX
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Fig2. Assign Funds and/or
Message contract TX
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Contract to Contract or to Public Key Hash Address payment @ S

Expected Contract Transactions List: Contract spend transactions generated by the
miner and added to a block

1 Contract spendsone or more of its owned output

2 These transactions must be include in a block to be considered valid

3 Generated by miners while verifying and executing transactions, rather than
being generated by consumers

4 No need to broadcast contract transactions on the P2P network.



Spend contract OP_ EXEC ASSIGN transaction

Spend Contract OP_EXEC_ASSIGN TX

Oeum
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| contract coins using (pubkeyhash,
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that spends coins

Fig3 Spend contract OP_EXEC_ASSIGN transaction
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consensus-critical coin picking algorithm

* To avoid nodes picking different outputs to spend contract funds,We
designed a strict and simple consensus-critical coin picking algorithm.

 First In First Out

* Any miner/node who picks different outputs will be rejected, because
it will fail at the block verification.



Fig4. Qtum Block Validation showing
Expected Contract Transaction List

Qtum Block Validation
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Standard transaction types: Bitcoin Script templates @ .
Deploying a new contract to the blockchain should use an output script which looks like so:

1; the version of the VM
[Gas limit]

[Gas price]

[Contract EVM bytecode]
OP_EXEC

Sending Funds and Message to an already deployed contract on the blockchain:

1; the version of the VM

[Gas limit]

[Gas price]

[Data to send to the contract]
[contract address]
OP_EXEC_ASSIGN

Note : there are no standard transaction type which can spend either of these. This is because they can
only be spent by using the Expected Contract Transaction List, and thus these spending transactions
would not be broadcast nor valid on the P2P network.



Gas model

*gas fee =gas limit *gas price
*txfee=vin-vout

*tx relay fee= txfee- gas fee
*refund = gas fee - used gas



Gas refund model
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Fig 5. Gas refund model
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Qtum General Architecture

Qtum transactions templates
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Fig 6 Qtum General Architecture

O-eum



SPV: Simple Payment Verification

1) - Microsoft Visual Studio 5554:Xamarin_Android_API_23

Build Debug Team GITEXT Tools Test Analyze Windd
p|9-Q- &
bvior.cs @ Network.cs @ Message.cs & NodelListene

-|% ContractDemo.Ma_ ContractDemo

:ach (var tx in txs)

var spent = tx.SpentCoins.Where(x => x.ScriptPubKey != nul
foreach(var c in spent)

Value of Fish:

list.RemoveAll(x=>x.0Outpoint.Hash == c.Outpoint.Hash &

¥ REPORT GOOD FISH
irn list;
REPORT BAD FISH
lance()
REQUEST MORE FISH
; total = @;

:ach(var tx in tracker.GetWalletTransactions(chain))
REFRESH

var recv = tx.ReceivedCoins.Where(x => x.ScriptPubKey != n
if (recv.Count() > @)

total += recv.Sum(x => x.Amount);
}
var sent = tx.SpentCoins.Where(x => x.ScriptPubKey != null
if (sent.Count() > @)

{

total -= sent.Sum(x => x.Amount);
¥
irn total;

veid btnRefreshClick(object sender, EventArgs

Eve gs

e)

{viewById<TextView>(Resource.Id.textBalance).Text = string.

Fig 7 testnet and mobile smartcontract

Balance: 87.49907235 (count: 19, utxos: 16)

24

g t

Fig 8 Apple Watch Wallet
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Qtum Project Timeline
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Fig 9 Timeline
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thank you

For more info: www.qgtum.org
Email: patrick@agtum.org
Slack: https://atumnexus.slack.com/

Welcome to join us!

MEETUP IN PARIS



